创客参与创客云商的策略选择研究

摘要/Abstract
摘要: 随着社会化商务的快速发展,基于在线社交平台的创客云商(CKYS)应运而生,该电商平台利用微信微博、博客等社交网络进行信息传播与产品销售。本文旨在研究创客是否加盟创客云商平台的策略选择问题。通过建立需求函数和利润函数模型,从消费者净效用和社会影响力两个方面来衡量创客社交网络的获利能力;通过对利润函数进行数学仿真,为创客提供加盟决策建议。研究结果表明:当其他变量取不同值时,平均互动率与利润的关系有两种:1)当创客的时间成本小于收益临界点时,利润随着平均互动率的增大而先递减,之后递增,最后递减,此时创客可以加盟该平台,且需继续提高平均互动率,当平均互动率达到利润函数的极大值点时不再增加互动。2)当创客的时间成本大于等于收益临界点时,利润随着平均互动率的增大而递减,此时创客不应该加盟该平台;同时,创客还可根据收回最初注册成本所需的时间进行加盟决策。
关键词:
创客云商;需求函数;社会网络;社会影响力;消费者净效用
Abstract: As the rapid development of social commerce, the online social platform-based CKYS has emerged, which uses the WeChat social network for information dissemination and product sales. The purpose of this paper is to study the strategy choices of whether retailers should join CKYS. By establishing a demand function and then a profit function model, the profitability of WeChat social networks of retailers is measured using both consumer net utility and social influence. The two independent variables in the demand function are the probability of that consumer net utility is non-negative and social influence. In the consumer net utility, the impact of reference price and unfit on utility are considered. Social influence measured by interaction rate and embeddedness is computed as a logistic model to express the probability that a retailer can make potential customers in the WeChat buy products under the conditions of certain interaction rate and embeddedness. Through the mathematical simulation of the profit function, some joining strategies can be proposed to help retailers to make joining decisions. The results of the study show that: When other variables take different values, there are two kinds of relations between average interaction rate and profit: 1) When the time cost of retailers is less than the profit threshold, the profit decreases first, then increases, and finally decreases as the average interaction rate increases. At this time, retailers can join the platform and should improve the average interaction rate. When the average interaction rate reaches the maximum value point of profit function, retailers should not increase the average interaction rate. 2) When the time cost of retailers is greater than or equal to the profit threshold, the profit decreases as the average interaction rate increases. At this time, the retailers should not join the platform. At the same time, the retailers can also make the decision whether to join CKYS according to the length of the time required to recover the initial registration cost. The results of the study can not only provide some strategies for retailers who intend to join CKYS, but also provide reference for follow-up research about social commerce.
Key words:
CKYS; demand function; social networks; social influence; consumer utility
中图分类号:
F713
F224
引用本文
闫梦颖, 艾时钟, 杜荣. 创客参与创客云商的策略选择研究[J]. 中国管理科学, 2023, 31(4): 130-141.
YAN Meng-ying, AI Shi-zhong, DU Rong. Research on the Strategies Choice of Participating in CYKS Platform[J]. Chinese Journal of Management Science, 2023, 31(4): 130-141.
使用本文
0
/
/
推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文:
http://www.zgglkx.com/CN/10.16381/j.cnki.issn1003-207x.2020.1289
http://www.zgglkx.com/CN/Y2023/V31/I4/130
参考文献
[1] 周军杰. 社会化商务背景下的用户粘性:用户互动的间接影响及调节作用[J]. 管理评论, 2015, 27(7): 127-136.Zhou Junjie. User stickiness in social commerce era: the indirect effect and moderating role of member interaction[J]. Management Review, 2015, 27(7): 127-136.[2] 陶晓波, 杨学成, 许研. 社会化商务研究述评与展望[J]. 管理评论, 2015, 27(11): 75-85.Tao Xiaobo, Yang Xuecheng, Xu Yan. Social commerce research: review and future direction[J].Management Review, 2015, 27(11): 75-85.[3] Chen Yanhong, Lu Yaobin, Wang Bin, et al. How do product recommendations affect impulse buying? An empirical study on WeChat social commerce[J]. Information & Management, 2019, 56(2): 236-248.[4] Grange C, Benbasat I, Burton-Jones A. A network-based conceptualization of social commerce and social commerce value[J]. Computers in Human Behavior, 2020, 108(7): 105855.[5] Hu Tao, Dai Hua, Salam A. Integrative qualities and dimensions of social commerce: Toward a unified view[J]. Information & Management, 2019, 56(2): 249-270.[6] Gibreel O, AlOtaibi D, Altmann J. Social commerce development in emerging markets[J]. Electronic Commerce Research and Applications, 2018, 27: 152-162.[7] Yeon J, Park I, Lee D. What creates trust and who gets loyalty in social commerce[J]. Journal of Retailing and Consumer Services, 2019, 50(9): 138-144.[8] Lien C H, Cao Yang, Zhou Xing. Service quality, satisfaction, stickiness, and usage intentions: an exploratory evaluation in the context of WeChat services[J]. Computers in Human Behavior, 2017, 68(3): 403-410.[9] Yang Shuai, Chen Sixing, Li Bin. The role of business and friendships on WeChat business: an emerging business model in China[J]. Journal of Global Marketing, 2016, 29(4): 174-187.[10] 张静,唐杰. 社会影响力分析综述[J]. 中国科学:信息科学, 2017, 47(8): 967-979.Zhang Jing, Tang Jie. Survey of social influence analysis and modeling[J]. Science China Information Sciences, 2017, 47(8): 967-979.[11] AlFalahi K, Atif Y, Abraham A. Models of influence in online social networks[J]. International Journal of Intelligent Systems, 2014, 29(2): 161-183.[12] Amblee N, Bui T. Harnessing the influence of social proof in online shopping: the effect of electronic word of mouth on sales of digital microproducts[J]. International Journal of Electronic Commerce, 2011, 16(2): 91-114.[13] Marsden P, Friedkin N. Network studies of social influence[J]. Sociological Methods & Research, 1993, 22(1): 127-151.[14] 吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-752.Wu Xindong, Li Yi, Li Lei. Influence analysis of online social networks[J]. Chinese Journal of Computers, 2014, 37(4): 735-752.[15] Aral S, Walker D. Tie strength, embeddedness, and social Influence: a large-scale networked experiment [J]. Management Science, 2014, 60(6): 1352-1370.[16] Granovetter M. The strength of weak ties[J]. The American Journal of Sociology, 1973, 78(6): 1360-1380.[17] Susarla A, Oh J. Tan Yong. Social networks and the diffusion of user-generated content: evidence from YouTube[J]. Information Systems Research, 2012, 23(1): 23-41.[18] Hu Zhenyu, Nasiry J. Are markets with loss-averse consumers more sensitive to losses[J]. Management Science, 2018, 64(3): 1384-1395.[19] Hong Yili, Pavlou P. Product fit uncertainty in online markets: nature, effects, and antecedents[J]. Information Systems Research, 2014, 25(2): 328-344.[20] Loana P, Wu Yaozhong. Dynamic pricing strategies with reference effects[J]. Operations Research, 2007, 55(3): 413-429.[21] Ahn H, Gm M, Kaminsky P. Pricing and manufacturing decisions when demand is a function of prices in multiple periods[J]. Operations Research, 2007, 55(6): 1039-1057.[22] Wang Ruxian. When prospect theory meets consumer choice models: assortment and pricing management with reference price[J]. Manufacturing & Service Operations Management, 2018, 20(3): 583-600.[23] 郭宇,王晰巍,李师萌,等. 基于情感分析的社会网络用户影响力模型研究[J]. 情报学报, 2017, 36(11): 1139-1147.Guo Yu, Wang Xinwei, Li Shimeng, et al. Research on the influence model of social network users based on emotional analysis[J]. Journal of the China Society for Scientific and Technical Information, 2017, 36(11): 1139-1147.[24] Zhang Xin, Han Dingding, Yang Ruiqi, et al. Users’ participation and social influence during information spreading on Twitter[J]. Plos One, 2017, 12(9): 1-17.[25] Deng Xiaoheng, Pan Yan, Shen Hailan, et al. Credit distribution for influence maximization in online social networks with node features[J]. Journal of Intelligent and Fuzzy Systems, 2016, 31(2): 979-990.[26] Singh P, Phelps C. Networks, social influence, and the choice among competing innovations: Insights from open source software licenses[J]. Information Systems Research, 2013, 24(3): 539-560.[27] Dewan S, Ho Y, Ramaprasad J. Popularity or proximity: characterizing the nature of social influence in an online music community[J]. Information Systems Research, 2017, 28(1): 117-136.[28] Mehra A, Kumar S, Raju J. Competitive strategies for brick-and-mortar stores to counter “showrooming”[J]. Management Science, 2018, 64(7): 3076-3090.[29] Granovetter M. Economic action and social structure: the problem of embeddedness[J]. American Journal of Sociology, 1985, 91(3): 481-510.[30] Gulati R. Alliances and networks[J]. Strategic Management Journal, 1986, 19(4): 293-317.[31] Ravi B, Alok G, Sarah R, et al. Trust and the strength of ties in online social networks: an exploratory field experiment[J]. MIS Quarterly: Management Information Systems, 2017, 41(1): 115-130.[32] Ravi B, Qiu Liangfei, Sarah R. Repeated interactions versus social ties: quantifying the economic value of trust, forgiveness, and reputation using a field experiment[J]. MIS Quarterly, 2017, 41(3): 841-866.[33] 周军杰,左美云. 线上线下互动、群体分化与知识共享的关系研究——基于虚拟社区的实证分析[J]. 中国管理科学, 2012, 20(6): 185-192.Zhou Junjie, Zuo Meiyun. Research on the relationship among the online/offline interaction、group differentiation and knowledge sharing: an empirical analysis based on virtual community[J]. Chinese Journal of Management Science, 2012, 20(6): 185-192.[34] Burt R. Positions in networks[J]. Social Forces, 1976, 55(1): 93-122.[35] Wang Jing, Aribarg A, Atchade Y. Modeling choice interdependence in a social network[J]. Marketing Science, 2013, 32(6): 977-997.[36] Schbel M, Rieskamp J, Huber R. Social influences in sequential decision making[J]. Plos One, 2016, 11(1): 1-23.[37] Mariani M, Lamarauna A. The impact of social influence and trust on customer-to-customer online shoppers’ purchase intention: an empirical study in Indonesia[J]. GSTF Journal on Computing, 2017, 5(3): 1-6.[38] Pan Xue, Hou Lei, Liu Kecheng. Social influence on selection behaviour: distinguishing local- and global-driven preferential attachment[J]. Plos One, 2017, 12(4): 1-11.[39] Fang Xiao, Hu P, Li Zhepeng, et al. Predicting adoption probabilities in social networks[J]. Information Systems Research, 2013, 24(1): 128-145.[40] Ma Liye, Krishnan R, Montgomery A. Latent homophily or social influence? An empirical analysis of purchase within a social network[J]. Management Science, 2015, 61(2): 454-473.[41] Godes D, Mayzlin D, Chen Yubo, et al. The firm’s management of social interactions[J]. Marketing Letters, 2005, 16(4): 415-428.[42] Sun M, Zhang Xiaoquan, Zhu Feng. U-shaped conformity in online social networks[J]. Marketing Science, 2019, 38(3): 461-480.[43] Kenneth G, Bryan B. Social learning and solar photovoltaic adoption[J]. Management Science, 2021,67(11): 7091-7112.[44] Qiu Liangfei, Arunima C, Asoo V. Multidimensional observational learning in social networks: theory and experimental evidence[J]. Information Systems Research, 2021,32(3): 876-894.[45] Feldman P, Papanastasiou Y, Segev E. Social learning and the design of new experience goods[J]. Management Science, 2019, 65(4): 1502-1519.[46] Tan Xue, Wang Youwei, Tan Yong. Impact of live chat on purchase in electronic markets: the moderating role of information cues[J]. Information Systems Research, 2019, 30(4): 1248-1271.[47] Song Tingting, Tang Qian, Huang Jinghua. Triadic closure, homophily, and reciprocation: an empirical investigation of social ties between content providers[J]. Information Systems Research, 2019, 30(3): 912-926.[48] Rishika R, Ramaprasad J. The effects of asymmetric social ties, structural embeddedness, and tie strength on online content contribution behavior[J]. Management Science, 2019, 65(7): 3398-3422.[49] Zhang Yuchi, Godes D. Learning from online social ties[J]. Marketing Science, 2018, 37(3): 425-444.[50] Sadat R, Puneet M, Chong Juinkuan. Identification and estimation of endogenous peer effects using partial network data from multiple reference groups[J]. Management Science, 2021,67(8): 4643-5300.[51] Wang Chong, Zhang Xiaoquan, Hann I. Socially nudged: a quasi-experimental study of friends’ social influence in online product ratings[J]. Information Systems Research, 2018, 29(3): 641-655.[52] Uetake K, Yang N. Inspiration from the “biggest loser”: Social interactions in a weight loss program[J]. Marketing Science, 2020, 39(3): 487-499.[53] Hao Haijing, Rema P, Sun Baohong, et al. Quantifying the impact of social influence on the information technology implementation process by physicians: a hierarchical bayesian learning approach[J]. Information Systems Research, 2018, 29(1): 25-41.[54] Kwark Y, Chen Jianqing, Raghunathan S. Online product reviews: implications for retailers and competing manufacturers[J]. Information Systems Research, 2014, 25(1): 93-110.[55] Morvinski C, Amir O, Muller E. “Ten million readers can’t be wrong!” or can they? On the role of information about adoption stock in new product trial[J]. Marketing Science, 2017, 36(2): 290-300.[56] Morton D, Harold B G. A study of normative and informational social influences upon individual judgement[J]. Journal of Abnormal Psychology, 1955, 51(3): 629-636.[57] Iyengar R, Van den Bulte C, W. Valente T. Opinion leadership and social contagion in new product diffusion[J]. Marketing Science, 2011, 30(2): 195-212.[58] Goldenberg J, Lehmann D, Shidlovski D, et al. The role of expert versus social opinion leaders in new product adoption[J]. Marketing Science Institute, 2006,1(1): 67-84.[59] Lee J, Bell D. Neighborhood social capital and social learning for experience attributes of products[J]. Marketing Science, 2013, 32(6): 960-976.[60] 冯娇,姚忠. 基于社会学习理论的在线评论信息对购买决策的影响研究[J]. 中国管理科学, 2016,24(9): 106-114.Feng Jiao, Yao Zhong. Consumer-generated reviews based on social learning theory: implications for purchase decision[J]. Chinese Journal of Management Science, 2016, 24(9): 106-114.[61] Fibich G, Gavious A, Lowengart O. Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects[J]. Operations Research, 2003, 51(5): 721-734.[62] Bing Jing. Showrooming and webrooming: information externalities between online and offline sellers[J]. Marketing Science, 2018, 37(3): 469-483.[63] Zhou Feng, Jiao Jianxin, Lei Baiying. A linear threshold-hurdle model for product adoption prediction incorporating social network effects[J]. Information Sciences, 2015, 307: 95-109.[64] Yin Hongjian, Yu Hai, Zhao Yuli, et al. Analysis of the dynamic influence of social network nodes[J]. Scientific Programming, 2017(1): 5046905.1-5046905.6.
相关文章 0
No related articles found!
Metrics
阅读次数
全文
摘要
本文评价
推荐阅读 0
No Suggested Reading articles found!